420 research outputs found

    Frequency-modulated nuclear localization bursts coordinate gene regulation

    Get PDF
    In yeast, the transcription factor Crz1 is dephosphorylated and translocates into the nucleus in response to extracellular calcium. Here we show, using time-lapse microscopy, that Crz1 exhibits short bursts of nuclear localization (typically lasting 2 min) that occur stochastically in individual cells and propagate to the expression of downstream genes. Strikingly, calcium concentration controls the frequency, but not the duration, of localization bursts. Using an analytic model, we also show that this frequency modulation of bursts ensures proportional expression of multiple target genes across a wide dynamic range of expression levels, independent of promoter characteristics. We experimentally confirm this theory with natural and synthetic Crz1 target promoters. Another stress-response transcription factor, Msn2, exhibits similar, but largely uncorrelated, localization bursts under calcium stress suggesting that frequency-modulation regulation of localization bursts may be a general control strategy used by the cell to coordinate multi-gene responses to external signals

    Inferring Kangaroo Phylogeny from Incongruent Nuclear and Mitochondrial Genes

    Get PDF
    The marsupial genus Macropus includes three subgenera, the familiar large grazing kangaroos and wallaroos of M. (Macropus) and M. (Osphranter), as well as the smaller mixed grazing/browsing wallabies of M. (Notamacropus). A recent study of five concatenated nuclear genes recommended subsuming the predominantly browsing Wallabia bicolor (swamp wallaby) into Macropus. To further examine this proposal we sequenced partial mitochondrial genomes for kangaroos and wallabies. These sequences strongly favour the morphological placement of W. bicolor as sister to Macropus, although place M. irma (black-gloved wallaby) within M. (Osphranter) rather than as expected, with M. (Notamacropus). Species tree estimation from separately analysed mitochondrial and nuclear genes favours retaining Macropus and Wallabia as separate genera. A simulation study finds that incomplete lineage sorting among nuclear genes is a plausible explanation for incongruence with the mitochondrial placement of W. bicolor, while mitochondrial introgression from a wallaroo into M. irma is the deepest such event identified in marsupials. Similar such coalescent simulations for interpreting gene tree conflicts will increase in both relevance and statistical power as species-level phylogenetics enters the genomic age. Ecological considerations in turn, hint at a role for selection in accelerating the fixation of introgressed or incompletely sorted loci. More generally the inclusion of the mitochondrial sequences substantially enhanced phylogenetic resolution. However, we caution that the evolutionary dynamics that enhance mitochondria as speciation indicators in the presence of incomplete lineage sorting may also render them especially susceptible to introgression.This work has been supported by Australian Research Council grants to MJP (DP07745015) and MB (FT0991741). The website for the funder is www.arc.gov.au. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Embedding Temporal Constraints For Coordinated Execution in Habitat Automation

    Get PDF
    Future NASA plans call for long-duration deep space missions with human crews. Because of light-time delay and other considerations, increased autonomy will be needed. This will necessitate integration of tools in such areas as anomaly detection, diagnosis, planning, and execution. In this paper we investigate an approach that integrates planning and execution by embedding planner-derived temporal constraints in an execution procedure. To avoid the need for propagation, we convert the temporal constraints to dispatchable form. We handle some uncertainty in the durations without it affecting the execution; larger variations may cause activities to be skipped

    A New Survey for Giant Arcs

    Get PDF
    We report on the first results of an imaging survey to detect strong gravitational lensing targeting the richest clusters selected from the photometric data of the Sloan Digital Sky Survey (SDSS) with follow-up deep imaging observations from the Wisconsin Indiana Yale NOAO (WIYN) 3.5m telescope and the University of Hawaii 88-inch telescope (UH88). The clusters are selected from an area of 8000 deg^2 using the Red Cluster Sequence technique and span the redshift range 0.1 < z < 0.6, corresponding to a comoving cosmological volume of ~ 2 Gpc^3. Our imaging survey thus targets a volume more than an order of magnitude larger than any previous search. A total of 240 clusters were imaged of which 141 had sub-arcsecond image quality. Our survey has uncovered16 new lensing clusters with definite giant arcs, an additional 12 systems for which the lensing interpretation is very likely, and 9 possible lenses which contain shorter arclets or candidate arcs which are less certain and will require further observations to confirm their lensing origin. The number of new cluster lenses detected in this survey is likely > 30. Among these new systems are several of the most dramatic examples of strong gravitational lensing ever discovered with multiple bright arcs at large angular separation. These will likely become 'poster-child' gravitational lenses similar to Abell 1689 and CL0024+1654. The new lenses discovered in this survey will enable future sysetmatic studies of the statistics of strong lensing and its implications for cosmology and our structure formation paradigm.Comment: 19 pages, 7 pages of Figures, submitted to AJ. Fixed Typo

    Pulsatile Dynamics in the Yeast Proteome

    Get PDF
    The activation of transcription factors in response to environmental conditions is fundamental to cellular regulation. Recent work has revealed that some transcription factors are activated in stochastic pulses of nuclear localization, rather than at a constant level, even in a constant environment. In such cases, signals control the mean activity of the transcription factor by modulating the frequency, duration, or amplitude of these pulses. Although specific pulsatile transcription factors have been identified in diverse cell types, it has remained unclear how prevalent pulsing is within the cell, how variable pulsing behaviors are between genes, and whether pulsing is specific to transcriptional regulators or is employed more broadly. To address these issues, we performed a proteome-wide movie-based screen to systematically identify localization-based pulsing behaviors in Saccharomyces cerevisiae. The screen examined all genes in a previously developed fluorescent protein fusion library of 4,159 strains in multiple media conditions. This approach revealed stochastic pulsing in ten proteins, all transcription factors. In each case, pulse dynamics were heterogeneous and unsynchronized among cells in clonal populations. Pulsing is the only dynamic localization behavior that we observed, and it tends to occur in pairs of paralogous and redundant proteins. Taken together, these results suggest that pulsatile dynamics play a pervasive role in yeast and may be similarly prevalent in other eukaryotic species

    Combinatorial gene regulation by modulation of relative pulse timing

    Get PDF
    Studies of individual living cells have revealed that many transcription factors activate in dynamic, and often stochastic, pulses within the same cell. However, it has remained unclear whether cells might exploit the dynamic interaction of these pulses to control gene expression. Here, using quantitative single-cell time-lapse imaging of Saccharomyces cerevisiae, we show that the pulsatile transcription factors Msn2 and Mig1 combinatorially regulate their target genes through modulation of their relative pulse timing. The activator Msn2 and repressor Mig1 showed pulsed activation in either a temporally overlapping or non-overlapping manner during their transient response to different inputs, with only the non-overlapping dynamics efficiently activating target gene expression. Similarly, under constant environmental conditions, where Msn2 and Mig1 exhibit sporadic pulsing, glucose concentration modulated the temporal overlap between pulses of the two factors. Together, these results reveal a time-based mode of combinatorial gene regulation. Regulation through relative signal timing is common in engineering and neurobiology, and these results suggest that it could also function broadly within the signalling and regulatory systems of the cell
    • …
    corecore